Inverse and Disjoint Restrained Domination in Graphs
نویسنده
چکیده
Let D be a minimum secure restrained dominating set of a graph G = (V, E). If V – D contains a restrained dominating set D' of G, then D' is called an inverse restrained dominating set with respect to D. The inverse restrained domination number γr(G) of G is the minimum cardinality of an inverse restrained dominating set of G. The disjoint restrained domination number γrγr(G) of G is the minimum cardinality of the union of two disjoint restrained dominating sets in G. We also consider an invariant the minimum cardinality of the disjoint union of a dominating set and a restrained dominating set. In this paper, we initiate a study of these parameters and obtain some results on these new parameters.
منابع مشابه
$k$-tuple total restrained domination/domatic in graphs
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
متن کاملSome Algorithmic Results on Restrained Domination in Graphs
A set D ⊆ V of a graph G = (V,E) is called a restrained dominating set of G if every vertex not in D is adjacent to a vertex in D and to a vertex in V \D. The MINIMUM RESTRAINED DOMINATION problem is to find a restrained dominating set of minimum cardinality. Given a graph G, and a positive integer k, the RESTRAINED DOMINATION DECISION problem is to decide whether G has a restrained dominating ...
متن کاملOn Roman, Global and Restrained Domination in Graphs
In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملInverse and Disjoint Secure Total Domination in Graphs
Let G = (V, E) be a graph. Let D be a minimum secure total dominating set of G. If V – D contains a secure total dominating set D' of G, then D' is called an inverse secure total dominating set with respect to D. The inverse secure total domination number γst(G) of G is the minimum cardinality of an inverse secure total dominating set of G. The disjoint secure total domination number γstγst(G) ...
متن کامل